PI3K and Calcium Signaling in Cardiovascular Disease

PI3K and Calcium Signaling in Cardiovascular Disease

Alessandra Ghigo, Muriel Laffargue, Mingchuan Li, Emilio Hirsch

PI3K (phosphoinositide 3-kinase)-mediated compartmentalization of β-adrenergic receptors-dependent Ca2+ responses in cardiomyocytes. Class IB PI3Kγ restrains Ca2+ signaling in response to β-adrenergic stimuli via a kinase-unrelated mechanism. This relies on the ability of PI3Kγ to anchor PDE (phosphodiesterase)3 or 4 to their activator PKA in specific subcellular compartments and to promote PKA-mediated activation of PDEs (active PDE3/4). The ensuing cyclic AMP (cAMP) reduction limits PKA-mediated phosphorylation and activation of Ca2+-handling proteins, including L-type Ca2+ channel (LTCC) and PLN (phospholamban; left). In heart failure, a functional decay in PI3Kγ-directed protein–protein interactions limits PDE activity (inactive PDE3/4), leading to abnormal cAMP accumulation and uncontrolled PKA activity close to LTCC and PLN, which culminate in arrhythmogenic Ca2+ release events (right). PLN indicates phospholamban; and SR, sarcoplasmic reticulum. [Powerpoint File]

Comments are Disabled