Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis

Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis

Milka Koupenova, Lauren Clancy, Heather A. Corkrey, Jane E. Freedman

Platelet-mediated interactions with vascular or circulating cells. Platelets interact with endothelial and immune cells in the circulation, orchestrating a response to microbes, inflammatory stimuli, and vessel damage. Through their TLRs (Toll-like receptors; or inflammatory signals), platelets can change their surface expression and release their granule content, thereby engaging different immune cells. Platelets form heterotypic aggregates (HAGs) and initiate innate immune responses in the presence of TLR agonists and viruses such as encephalomyocarditis virus (EMCV), coxsackievirus B (CVB), dengue, flu, HIV. Platelets can interact with dendritic cells (DC) through their P-selectin (platelet selectin), activate them to become antigen (Ag) presenting through their CD154. By releasing α- or δ-granule content which leads to IgG (IgG1, IgG2, IgG3) production and control of T-cell function, platelets engage the adaptive immune response. Similarly, platelets are able to activate the endothelium, make it more permeable, and mediate leukocyte trafficking to the inflamed endothelium. Proteins in bold represent changes of expression on the platelet surface. Continuous lines represent direct binding; dotted lines represent interaction through secretion. 5HT indicates serotonin; CMV, cytomegalovirus; ICAM-1, intercellular adhesion molecule 1; IL, interleukin; PF4, platelet factor 4; PSGL1, P-selectin glycoprotein ligand 1; RANTES, regulated on activation, normal T cell expressed and secreted; TGF-β; transforming growth factor-β; and VCAM-1, vascular cell adhesion molecule 1. [Powerpoint File]

Comments are Disabled