Induced Pluripotent Stem Cells 10 Years Later For Cardiac Applications

Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications

Yoshinori Yoshida, Shinya Yamanaka

Factors which possibly cause clonal differences of induced pluripotent stem cells (iPSCs). [Powerpoint File]

Calcium Signaling and Cardiac Arrhythmias

Calcium Signaling and Cardiac Arrhythmias

Andrew P. Landstrom, Dobromir Dobrev, Xander H.T. Wehrens

Ryanodine receptor type-2 (RyR2) macromolecular complex. Cartoon representing RyR2 pore-forming subunits with accessory proteins that bind to and/or modulate channel function. CaM indicates calmodulin; CaMKII, Ca2+/calmodulin-dependent protein kinase II; CASQ2, calsequestrin-2; FKBP12.6, FK506-binding protein-12.6; JCTN, junctin; JPH2, juncophilin-2; PKA, protein kinase A; PM, plasma membrane; PP, protein phosphatase; SR, sarcoplasmic reticulum; TECRL, trans-2,3-enoyl-CoA reductase-like protein; and TRDN; triadin. [Powerpoint File]

Calcium Signaling and Cardiac Arrhythmias

Calcium Signaling and Cardiac Arrhythmias

Andrew P. Landstrom, Dobromir Dobrev, Xander H.T. Wehrens

Role of calcium-handling in excitation–contraction (EC) coupling. A, Schematic overview of key Ca2+-handling proteins involved in EC coupling. B, Schematic diagram of Ca2+ release unit and major components of the JMC (junctional membrane complex). The transverse tubule (TT) and sarcoplasmic reticulum (SR) membranes approximate to form the dyad. BIN1 indicates bridging integrator 1; Cav1.2, L-type Ca2+ channel; CAV3, caveolin-3; JPH2, juncophilin-2; NCX1, Na+/Ca2+ exchanger type-1; PM, plasma membrane; PMCA, plasmalemmal Ca2+-ATPase; RyR2, ryanodine receptor type-2; and SERCA2a, sarco/endoplasmic reticulum ATPase type-2a.* [Powerpoint File]

Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications

Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications

Yoshinori Yoshida, Shinya Yamanaka

Patient stratification based on drug responsiveness using induced pluripotent stem cells–derived cardiac myocytes. [Powerpoint File]

Environmental Determinants of Cardiovascular Disease

Environmental Determinants of Cardiovascular Disease

Aruni Bhatnagar

The effect of sunlight on cardiovascular health. The visible range of sunlight regulates the master clock located in the pacemaker neurons of the suprachiasmatic nucleus, which sets the intrinsic 24-h cycle and synchronizes the light-insensitive peripheral clocks to coordinate cycles of waking, sleeping, and feeding. The UVB radiation converts 7-dehydrocholesterol in the epidermis to pre–vitamin D3, which undergoes thermal isomerization to vitamin D. Vitamin D3 formed in the skin appear in the circulation and is then transported to the liver where it is converted to 25(OH)D3. In kidney, 25(OH) D3 undergoes hydroxylation to form biologically active 1,25(OH)2D. The UVA radiation induces photodegradation of nitrosothiols, such as S-nitrosylglutathione, which leads to the generation of NO, an important regulator of blood pressure. (Illustration credit: Ben Smith.) [Powerpoint File]

Calcium and Excitation-Contraction Coupling in the Heart

Calcium and Excitation-Contraction Coupling in the Heart

David A. Eisner, Jessica L. Caldwell, Kornél Kistamás, Andrew W. Trafford

Structures involved in Ca cycling. A, Schematic diagram. This shows surface membrane, transverse tubule, sarcoplasmic reticulum (SR), and mitochondria, as well as the various channels and transporters mentioned in the text. B, High-resolution transverse section of a ventricular myocyte showing t-tubule network. Reprinted from Jayasinghe et al39 with permission of the publisher. Copyright ©2009, Biophysical Society. C, Cartoon of dyad emphasizing the major proteins involved in Ca cycling. B-AR indicates beta adrenoceptor; MCU, mitochondrial Ca uniporter; NCX, sodium–calcium exchange; NCLX, mitochondrial Na–Ca exchange; PMCA, plasma membrane Ca-ATPase; RyR, ryanodine receptor; and SERCA, sarco/endoplasmic reticulum Ca-ATPase. [Powerpoint File]

PI3K and Calcium Signaling in Cardiovascular Disease

PI3K and Calcium Signaling in Cardiovascular Disease

Alessandra Ghigo, Muriel Laffargue, Mingchuan Li, Emilio Hirsch

Class I PI3Ks (phosphoinositide 3-kinases). Class I PI3Ks are obligate heterodimers composed by a p110 catalytic module and an adaptor subunit. Depending on the nature of the adaptor and of the activating membrane receptor, class I PI3Ks can be subgrouped into class IA and IB. Class IA includes PI3Kα, β, and δ, which are coupled to a p85 regulatory subunit and are engaged by tyrosine kinase receptors (RTKs). On the contrary, the unique member of class IB, PI3Kγ, binds to either p101 or p87 that, by tethering p110γ to the Gβγ subunit of G protein-coupled receptors (GPCRs), ensure the full enzyme activation. All class I isoenzymes phosphorylate PIP2 PtdIns(4,5)P2 to produce PIP3 that, in turn, serves as a docking site for intracellular effectors carrying a lipid-binding domain, such as Akt (protein kinase B). Activated Akt ultimately initiates a wide spectrum of biological events, ranging from proliferation, survival, and metabolic regulation. [Powerpoint File]

PI3K and Calcium Signaling in Cardiovascular Disease

PI3K and Calcium Signaling in Cardiovascular Disease

Alessandra Ghigo, Muriel Laffargue, Mingchuan Li, Emilio Hirsch

PI3K (phosphoinositide 3-kinase)-mediated compartmentalization of β-adrenergic receptors-dependent Ca2+ responses in cardiomyocytes. Class IB PI3Kγ restrains Ca2+ signaling in response to β-adrenergic stimuli via a kinase-unrelated mechanism. This relies on the ability of PI3Kγ to anchor PDE (phosphodiesterase)3 or 4 to their activator PKA in specific subcellular compartments and to promote PKA-mediated activation of PDEs (active PDE3/4). The ensuing cyclic AMP (cAMP) reduction limits PKA-mediated phosphorylation and activation of Ca2+-handling proteins, including L-type Ca2+ channel (LTCC) and PLN (phospholamban; left). In heart failure, a functional decay in PI3Kγ-directed protein–protein interactions limits PDE activity (inactive PDE3/4), leading to abnormal cAMP accumulation and uncontrolled PKA activity close to LTCC and PLN, which culminate in arrhythmogenic Ca2+ release events (right). PLN indicates phospholamban; and SR, sarcoplasmic reticulum. [Powerpoint File]

Multimodal Regulation of Cardiac Myocyte Proliferation

Multimodal Regulation of Cardiac Myocyte Proliferation

Xuejun Yuan, Thomas Braun

Schematic overview of cell-cycle activities, global DNA methylation, and metabolic properties of fetal, neonatal, adult, and hypertrophic cardiac myocytes. Green arrows represent cell-cycle processes leading to endomitosis and multinucleation, whereas orange arrows refer to endoreduplication resulting in polyploidy. cTnI (TNNI3) indicates cardiac troponin; FAO, fatty acid oxidation; and ssTnI(TNNI1), slow skeletal troponin. [Powerpoint File]

Multimodal Regulation of Cardiac Myocyte Proliferation

Multimodal Regulation of Cardiac Myocyte Proliferation

Xuejun Yuan, Thomas Braun

Schematic overview of the potential interplay between metabolic signals and epigenetic mechanisms for regulation of cardiac myocyte proliferation. Oxygen-dependent stimulation of mitochondrial respiration increases α-ketoglutarate (α-KG) production, which might stimulate DNA and histone demethylation thereby activating anti-proliferative genes or inducing accumulation of intracellular reactive oxygen species (ROS) and DNA damage responses. Such cues might promote polyplodization and/or activation of Hippo signaling prompting cell-cycle exit. In contrast, hypoxia stabilizes HIF1α (hypoxia-inducible factor 1-alpha) and leads to accumulation of intermediate metabolites such as succinate and fumarate, which inhibit α-KG–dependent epigenetic modifiers including TETs (ten–eleven translocation) and histone demethylases (HDMs) and stabilize HIF1α thus activating proproliferative gene programs. In addition, fumarate activates the Nrf2/Pitx2/Yap1 axis, which positively regulates proproliferative gene programs. Dashed lines indicate regulatory cascades investigated in noncardiac myocytes. [Powerpoint File]

AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System

AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System

Ian P. Salt, D. Grahame Hardie

Structure of human AMP-activated protein kinase (AMPK; α1β2γ1 complex).8 The model was created in space-filling mode using PyMol v1.7.4.2 with the co-ordinates in PDB file 4RER and with color coding similar to that in Figure 1. The heterotrimer was crystallized in the presence of β-cyclodextrin, which occupies the glycogen-binding site, staurosporine, which occupies the active site, and AMP, which occupies sites 1, 3, and 4 on the γ subunit (sites 1 and 4 are round the back in this view). Although Thr172 was phosphorylated, it is not visible in this view but lies in the cleft between the kinase domain C lobe and the β-CTD, just over the right-hand shoulder of the C-lobe. ADaM indicates Allosteric Drug and Metabolite; AID, autoinhibitory domain; CBM, carbohydrate-binding module; CBS1, cystathionine beta-synthase motif-1, etc; CTD, C-terminal domain; and NTD, N-terminal domain. [Powerpoint File]

Autophagy and Mitophagy in Cardiovascular Disease

Autophagy and Mitophagy in Cardiovascular Disease

José Manuel Bravo-San Pedro, Guido Kroemer, Lorenzo Galluzzi

Detrimental effects of autophagy or mitophagy inhibition on cardiovascular health. Multiple genetic interventions that limit autophagic or mitophagic flux at the whole-body level or in specific compartments of the cardiovascular system have been associated with the spontaneous development of cardiovascular disorders. AP indicates autophagosome; APL, autophagolysosome; Atg5, autophagy related 5; Bnip3l, BCL2 interacting protein 3 like; Dnml1, dynamin 1 like; Fbxo32, F-box protein 32; L, lysosome; Lamp2, lysosomal-associated membrane protein 2; Mfn1, mitofusin 1; Park2, Parkinson disease (autosomal recessive, juvenile) 2, parkin; Pink1, PTEN-induced putative kinase 1; Sirt6, sirtuin 6; Tfrc, transferrin receptor; and Trp53, transformation-related protein 53. [Powerpoint File]

Extracellular Vesicles in Metabolic Syndrome

Extracellular Vesicles in Metabolic Syndrome

M. Carmen Martínez, Ramaroson Andriantsitohaina

Extracellular vesicles (EVs) participate in the development of atherosclerotic plaque. EVMP from smooth muscle cells (pink) induce endothelial dysfunction and macrophage infiltration in the vessel wall through the reactive oxygen species (ROS) production and p38 activation in endothelial cells. EVEXO derived from dendritic cells (blue) increase endothelial inflammation by activation of nuclear factor-κB (NF-κB) pathway and increasing expression of proinflammatory molecules, including vascular cell adhesion molecule (VCAM), intercellular adhesion molecule (ICAM1), and E-selectin. [Powerpoint File]

Extracellular Vesicles in Angiogenesis

Extracellular Vesicles in Angiogenesis

Dilyana Todorova, Stéphanie Simoncini, Romaric Lacroix, Florence Sabatier, Françoise Dignat-George

Mechanisms involved in the modulation of Angiogenesis by platelet-derived extracellular vesicles (EVs). Platelet-derived EVs contain various growth factors and chemokines that induce proangiogenic signaling in endothelial cell (EC). Spingosine-1-phosphate (S1P1), present on the EV surface, induces PI3K activation and, together with VEGF and bFGF, promotes angiogenesis. The EVs released by platelets stimulate the proangiogenic potential of circulating angiogenic cells by increasing their expression of both membrane molecules and soluble factors. Platelet-derived EVs can inhibit angiogenesis by transferring the p22phox and gp91 subunits of NADPH oxidase and increasing the oxidative stress in EC. ? indicates that the exact content of the EVs is not reported; bFGF, basic fibroblast growth factor; EGF, epidermal growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; HGF, hepatocyte growth factor; NADPH, nicotinamide adenine dinucleotide phosphate; PI3K, phosphoinositide 3-kinase; RANTES, regulated on activation, normal T-cell–expressed and secreted; ROS, reactive oxygen species; VEGF, vascular endothelial growth factor; and VEGFR, vascular endothelial growth factor receptor. [Powerpoint FIle]

Extracellular Vesicles in Angiogenesis

Extracellular Vesicles in Angiogenesis

Dilyana Todorova, Stéphanie Simoncini, Romaric Lacroix, Florence Sabatier, Françoise Dignat-George

Mechanisms involved in the modulation of Angiogenesis by endothelial cell (EC)–derived extracellular vesicles (EVs). EC release EVs rich in micro-RNA such as miR-214 and miR-126, that are transferred to recipient EC and induce proangiogenic signaling. EVs contain functional matrix metalloproteinases that facilitate angiogenesis through the degradation of components of the extracellular matrix. Dll4 is transferred to EC by the EVs and induces Notch receptor internalization and tip cell formation. EVs bear, at their surface, a tissue factor that interacts with β1 integrin and induces Rac1-ERK1/2-ETS1 signaling, leading to the increased secretion of CCL2. EVs transport the complex uPA/uPAR, which stimulates angiogenesis through plasmin generation. The phosphatidylserine present on the surface of the EVs interacts with CD36 and induces Fyn kinase signaling, which leads to increased oxidative stress and the inhibition of angiogenesis. ATM indicates ataxia telangiectasia mutated; CCl2, chemokine c-c motif ligand 2; Dll4, Delta-like 4; ECM, extracellular matrix; ERK1/2, extracellular signal-related kinase 1 and 2; ETS1, avian erythroblastosis virus E26 homolog-1; IL-3R, interleukin-3 receptor; MMPs, matrix metalloproteinases; NotchR, Notch receptor; PS, phosphatidylserine; Rac1, Ras-related C3 botulinum toxin substrate 1; ROS, reactive oxygen species; TF, tissue factor; TIMPS, tissue inhibitor of metalloproteinases; uPA, urokinase plasminogen activator; and uPAR, urokinase plasminogen activator receptor. [Powerpoint File]